Introduction à Mongoose pour MongoDB

Mongoose est une bibliothèque ODM (Object Data Modeling) pour MongoDB et Node.js. Il gère les relations entre les données, fournit la validation de schéma et est utilisé pour traduire entre les objets dans le code et la représentation de ces objets dans MongoDB.

MongoDB est une base de données de documents NoSQL sans schéma. Cela signifie que vous pouvez y stocker des documents JSON et que la structure de ces documents peut varier car elle n'est pas appliquée comme les bases de données SQL. C'est l'un des avantages de l'utilisation de NoSQL car il accélère le développement d'applications et réduit la complexité des déploiements.

Voici un exemple de la façon dont les données sont stockées dans Mongo par rapport à SQL Database:

Terminologies

Les collections

Les «collections» en Mongo sont équivalentes aux tables des bases de données relationnelles. Ils peuvent contenir plusieurs documents JSON.

Des documents

Les «documents» sont équivalents aux enregistrements ou aux lignes de données en SQL. Alors qu'une ligne SQL peut référencer des données dans d'autres tables, les documents Mongo combinent généralement cela dans un document.

Des champs

Les «champs» ou attributs sont similaires aux colonnes d'une table SQL.

Schéma

Alors que Mongo est sans schéma, SQL définit un schéma via la définition de table. Un «schéma» Mongoose est une structure de données de document (ou une forme du document) qui est appliquée via la couche d'application.

Des modèles

Les «modèles» sont des constructeurs d'ordre supérieur qui prennent un schéma et créent une instance d'un document équivalente à des enregistrements dans une base de données relationnelle.

Commencer

Installation de Mongo

Avant de commencer, configurons Mongo. Vous pouvez choisir l' une des options suivantes (nous utilisons l'option n ° 1 pour cet article):

  1. Téléchargez la version MongoDB appropriée pour votre système d'exploitation à partir du site Web MongoDB et suivez leurs instructions d'installation
  2. Créez un abonnement gratuit à une base de données sandbox sur mLab
  3. Installez Mongo à l'aide de Docker si vous préférez utiliser Docker

Parcourons certaines des bases de Mongoose en implémentant un modèle qui représente des données pour un carnet d'adresses simplifié.

J'utilise Visual Studio Code, Node 8.9 et NPM 5.6. Lancez votre IDE préféré, créez un projet vierge et commençons! Nous utiliserons la syntaxe ES6 limitée dans Node, nous ne configurerons donc pas Babel.

Installation de NPM

Allons dans le dossier du projet et initialisons notre projet

npm init -y

Installons Mongoose et une bibliothèque de validation avec la commande suivante:

npm install mongoose validator

La commande d'installation ci-dessus installera la dernière version des bibliothèques. La syntaxe Mongoose dans cet article est spécifique à Mongoose v5 et au-delà.

Connexion à la base de données

Créer un fichier ./src/database.jssous la racine du projet.

Ensuite, nous ajouterons une classe simple avec une méthode qui se connecte à la base de données.

Votre chaîne de connexion variera en fonction de votre installation.

let mongoose = require('mongoose'); const server = '127.0.0.1:27017'; // REPLACE WITH YOUR DB SERVER const database = 'fcc-Mail'; // REPLACE WITH YOUR DB NAME class Database { constructor() { this._connect() } _connect() { mongoose.connect(`mongodb://${server}/${database}`) .then(() => { console.log('Database connection successful') }) .catch(err => { console.error('Database connection error') }) } } module.exports = new Database()

le require(‘mongoose’)l'appel ci-dessus renvoie un objet Singleton. Cela signifie que la première fois que vous appelez require(‘mongoose’), il crée une instance de la classe Mongoose et la renvoie. Lors des appels suivants, il renverra la même instance qui a été créée et qui vous a été renvoyée la première fois en raison du fonctionnement de l'importation / exportation de module dans ES6.

De même, nous avons transformé notre classe Database en singleton en renvoyant une instance de la classe dans l' module.exportsinstruction car nous n'avons besoin que d'une seule connexion à la base de données.

ES6 nous permet de créer très facilement un modèle de singleton (instance unique) en raison du fonctionnement du chargeur de module en mettant en cache la réponse d'un fichier précédemment importé.

Schéma de mangouste vs modèle

Un modèle Mongoose est un wrapper sur le schéma Mongoose. Un schéma Mongoose définit la structure du document, les valeurs par défaut, les validateurs, etc., tandis qu'un modèle Mongoose fournit une interface à la base de données pour créer, interroger, mettre à jour, supprimer des enregistrements, etc.

La création d'un modèle Mongoose comprend principalement trois parties:

1. Référence à Mongoose

let mongoose = require('mongoose')

This reference will be the same as the one that was returned when we connected to the database, which means the schema and model definitions will not need to explicitly connect to the database.

2. Defining the Schema

A schema defines document properties through an object where the key name corresponds to the property name in the collection.

let emailSchema = new mongoose.Schema({ email: String })

Here we define a property called email with a schema type String which maps to an internal validator that will be triggered when the model is saved to the database. It will fail if the data type of the value is not a string type.

The following Schema Types are permitted:

  • Array
  • Boolean
  • Buffer
  • Date
  • Mixed (A generic / flexible data type)
  • Number
  • ObjectId
  • String

Mixed and ObjectId are defined under require(‘mongoose’).Schema.Types.

3. Exporting a Model

We need to call the model constructor on the Mongoose instance and pass it the name of the collection and a reference to the schema definition.

module.exports = mongoose.model('Email', emailSchema)

Let’s combine the above code into ./src/models/email.jsto define the contents of a basic email model:

let mongoose = require('mongoose') let emailSchema = new mongoose.Schema({ email: String }) module.exports = mongoose.model('Email', emailSchema)

A schema definition should be simple, but its complexity is usually based on application requirements. Schemas can be reused and they can contain several child-schemas too. In the example above, the value of the email property is a simple value type. However, it can also be an object type with additional properties on it.

We can create an instance of the model we defined above and populate it using the following syntax:

let EmailModel = require('./email') let msg = new EmailModel({ email: '[email protected]' })

Let’s enhance the Email schema to make the email property a unique, required field and convert the value to lowercase before saving it. We can also add a validation function that will ensure that the value is a valid email address. We will reference and use the validator library installed earlier.

let mongoose = require('mongoose') let validator = require('validator') let emailSchema = new mongoose.Schema({ email: { type: String, required: true, unique: true, lowercase: true, validate: (value) => { return validator.isEmail(value) } } }) module.exports = mongoose.model('Email', emailSchema)

Basic Operations

Mongoose has a flexible API and provides many ways to accomplish a task. We will not focus on the variations because that is out of scope for this article, but remember that most of the operations can be done in more than one way either syntactically or via the application architecture.

Create Record

Let’s create an instance of the email model and save it to the database:

let EmailModel = require('./email') let msg = new EmailModel({ email: '[email protected]' }) msg.save() .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })

The result is a document that is returned upon a successful save:

{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }

The following fields are returned (internal fields are prefixed with an underscore):

  1. The _id field is auto-generated by Mongo and is a primary key of the collection. Its value is a unique identifier for the document.
  2. The value of the email field is returned. Notice that it is lower-cased because we specified the lowercase:true attribute in the schema.
  3. __v is the versionKey property set on each document when first created by Mongoose. Its value contains the internal revision of the document.

If you try to repeat the save operation above, you will get an error because we have specified that the email field should be unique.

Fetch Record

Let’s try to retrieve the record we saved to the database earlier. The model class exposes several static and instance methods to perform operations on the database. We will now try to find the record that we created previously using the find method and pass the email as the search term.

EmailModel .find({ email: '[email protected]' // search query }) .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })

The document returned will be similar to what was displayed when we created the record:

{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }

Update Record

Let’s modify the record above by changing the email address and adding another field to it, all in a single operation. For performance reasons, Mongoose won’t return the updated document so we need to pass an additional parameter to ask for it:

EmailModel .findOneAndUpdate( { email: '[email protected]' // search query }, { email: '[email protected]' // field:values to update }, { new: true, // return updated doc runValidators: true // validate before update }) .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })

The document returned will contain the updated email:

{ _id: 5a78fe3e2f44ba8f85a2409a, email: '[email protected]', __v: 0 }

Delete Record

We will use the findOneAndRemove call to delete a record. It returns the original document that was removed:

EmailModel .findOneAndRemove({ email: '[email protected]' }) .then(response => { console.log(response) }) .catch(err => { console.error(err) })

Helpers

We have looked at some of the basic functionality above known as CRUD (Create, Read, Update, Delete) operations, but Mongoose also provides the ability to configure several types of helper methods and properties. These can be used to further simplify working with data.

Let’s create a user schema in ./src/models/user.js with the fieldsfirstName and lastName:

let mongoose = require('mongoose') let userSchema = new mongoose.Schema({ firstName: String, lastName: String }) module.exports = mongoose.model('User', userSchema)

Virtual Property

A virtual property is not persisted to the database. We can add it to our schema as a helper to get and set values.

Let’s create a virtual property called fullName which can be used to set values on firstName and lastName and retrieve them as a combined value when read:

userSchema.virtual('fullName').get(function() { return this.firstName + ' ' + this.lastName }) userSchema.virtual('fullName').set(function(name) { let str = name.split(' ') this.firstName = str[0] this.lastName = str[1] })

Callbacks for get and set must use the function keyword as we need to access the model via the thiskeyword. Using fat arrow functions will change what this refers to.

Now, we can set firstName and lastName by assigning a value to fullName:

let model = new UserModel() model.fullName = 'Thomas Anderson' console.log(model.toJSON()) // Output model fields as JSON console.log() console.log(model.fullName) // Output the full name

The code above will output the following:

{ _id: 5a7a4248550ebb9fafd898cf, firstName: 'Thomas', lastName: 'Anderson' } Thomas Anderson

Instance Methods

We can create custom helper methods on the schema and access them via the model instance. These methods will have access to the model object and they can be used quite creatively. For instance, we could create a method to find all the people who have the same first name as the current instance.

In this example, let’s create a function to return the initials for the current user. Let’s add a custom helper method called getInitials to the schema:

userSchema.methods.getInitials = function() { return this.firstName[0] + this.lastName[0] }

This method will be accessible via a model instance:

let model = new UserModel({ firstName: 'Thomas', lastName: 'Anderson' }) let initials = model.getInitials() console.log(initials) // This will output: TA

Static Methods

Similar to instance methods, we can create static methods on the schema. Let’s create a method to retrieve all users in the database:

userSchema.statics.getUsers = function() { return new Promise((resolve, reject) => { this.find((err, docs) => { if(err) { console.error(err) return reject(err) } resolve(docs) }) }) }

Calling getUsers on the Model class will return all the users in the database:

UserModel.getUsers() .then(docs => { console.log(docs) }) .catch(err => { console.error(err) })

Adding instance and static methods is a nice approach to implement an interface to database interactions on collections and records.

Middleware

Middleware are functions that run at specific stages of a pipeline. Mongoose supports middleware for the following operations:

  • Aggregate
  • Document
  • Model
  • Query

For instance, models have pre and post functions that take two parameters:

  1. Type of event (‘init’, ‘validate’, ‘save’, ‘remove’)
  2. A callback that is executed with this referencing the model instance

Let’s try an example by adding two fields called createdAt and updatedAt to our schema:

let mongoose = require('mongoose') let userSchema = new mongoose.Schema({ firstName: String, lastName: String, createdAt: Date, updatedAt: Date }) module.exports = mongoose.model('User', userSchema)

When model.save() is called, there is a pre(‘save’, …) and post(‘save’, …) event that is triggered. For the second parameter, you can pass a function that is called when the event is triggered. These functions take a parameter to the next function in the middleware chain.

Let’s add a pre-save hook and set values for createdAt and updatedAt:

userSchema.pre('save', function (next) { let now = Date.now() this.updatedAt = now // Set a value for createdAt only if it is null if (!this.createdAt) { this.createdAt = now } // Call the next function in the pre-save chain next() })

Let’s create and save our model:

let UserModel = require('./user') let model = new UserModel({ fullName: 'Thomas Anderson' } msg.save() .then(doc => { console.log(doc) }) .catch(err => { console.error(err) })

You should see values for createdAt and updatedAt when the record that is created is printed:

{ _id: 5a7bbbeebc3b49cb919da675, firstName: 'Thomas', lastName: 'Anderson', updatedAt: 2018-02-08T02:54:38.888Z, createdAt: 2018-02-08T02:54:38.888Z, __v: 0 }

Plugins

Suppose that we want to track when a record was created and last updated on every collection in our database. Instead of repeating the above process, we can create a plugin and apply it to every schema.

Let’s create a file ./src/model/plugins/timestamp.js and replicate the above functionality as a reusable module:

module.exports = function timestamp(schema) { // Add the two fields to the schema schema.add({ createdAt: Date, updatedAt: Date }) // Create a pre-save hook schema.pre('save', function (next) { let now = Date.now() this.updatedAt = now // Set a value for createdAt only if it is null if (!this.createdAt) { this.createdAt = now } // Call the next function in the pre-save chain next() }) }

To use this plugin, we simply pass it to the schemas that should be given this functionality:

let timestampPlugin = require('./plugins/timestamp') emailSchema.plugin(timestampPlugin) userSchema.plugin(timestampPlugin)

Query Building

Mongoose has a very rich API that handles many complex operations supported by MongoDB. Consider a query where we can incrementally build query components.

In this example, we are going to:

  1. Find all users
  2. Skip the first 100 records
  3. Limit the results to 10 records
  4. Sort the results by the firstName field
  5. Select the firstName
  6. Execute that query
UserModel.find() // find all users .skip(100) // skip the first 100 items .limit(10) // limit to 10 items .sort({firstName: 1} // sort ascending by firstName .select({firstName: true} // select firstName only .exec() // execute the query .then(docs => { console.log(docs) }) .catch(err => { console.error(err) })

Closing

We have barely scratched the surface exploring some of the capabilities of Mongoose. It is a rich library full of useful and and powerful features that make it a joy to work with data models in the application layer.

While you can interact with Mongo directly using Mongo Driver, Mongoose will simplify that interaction by allowing you to model relationships between data and validate them easily.

Fun Fact:Mongoose is created by Valeri Karpovwho is an incredibly talented engineer! He coined the term The MEAN Stack.

If this article was helpful, ??? and Follow me on Twitter.